Research Paper: Automatic Resolution of Ambiguous Terms Based on Machine Learning and Conceptual Relations in the UMLS
نویسندگان
چکیده
UNLABELLED Motivation. The UMLS has been used in natural language processing applications such as information retrieval and information extraction systems. The mapping of free-text to UMLS concepts is important for these applications. To improve the mapping, we need a method to disambiguate terms that possess multiple UMLS concepts. In the general English domain, machine-learning techniques have been applied to sense-tagged corpora, in which senses (or concepts) of ambiguous terms have been annotated (mostly manually). Sense disambiguation classifiers are then derived to determine senses (or concepts) of those ambiguous terms automatically. However, manual annotation of a corpus is an expensive task. We propose an automatic method that constructs sense-tagged corpora for ambiguous terms in the UMLS using MEDLINE abstracts. METHODS For a term W that represents multiple UMLS concepts, a collection of MEDLINE abstracts that contain W is extracted. For each abstract in the collection, occurrences of concepts that have relations with W as defined in the UMLS are automatically identified. A sense-tagged corpus, in which senses of W are annotated, is then derived based on those identified concepts. The method was evaluated on a set of 35 frequently occurring ambiguous biomedical abbreviations using a gold standard set that was automatically derived. The quality of the derived sense-tagged corpus was measured using precision and recall. RESULTS The derived sense-tagged corpus had an overall precision of 92.9% and an overall recall of 47.4%. After removing rare senses and ignoring abbreviations with closely related senses, the overall precision was 96.8% and the overall recall was 50.6%. CONCLUSIONS UMLS conceptual relations and MEDLINE abstracts can be used to automatically acquire knowledge needed for resolving ambiguity when mapping free-text to UMLS concepts.
منابع مشابه
Automatic Resolution of Ambiguous Terms Based on Machine Learning and Conceptual Relations in the UMLS
Methods. For a term W that represents multiple UMLS concepts, a collection of MEDLINE abstracts that contain W is extracted. For each abstract in the collection, occurrences of concepts that have relations with W as defined in the UMLS are automatically identified. A sense-tagged corpus, in which senses of W are annotated, is then derived based on those identified concepts. The method was evalu...
متن کاملCorpus based coreference resolution for Farsi text
"Coreference resolution" or "finding all expressions that refer to the same entity" in a text, is one of the important requirements in natural language processing. Two words are coreference when both refer to a single entity in the text or the real world. So the main task of coreference resolution systems is to identify terms that refer to a unique entity. A coreference resolution tool could be...
متن کاملThe machine learning process in applying spatial relations of residential plans based on samples and adjacency matrix
The current world is moving towards the development of hardware or software presence of artificial intelligence in all fields of human work, and architecture is no exception. Now this research seeks to present a theoretical and practical model of intuitive design intelligence that shows the problem of learning layout and spatial relationships to artificial intelligence algorithms; Therefore, th...
متن کاملAutomatic Interpretation of UltraCam Imagery by Combination of Support Vector Machine and Knowledge-based Systems
With the development of digital sensors, an increasing number of high-resolution images are available. Interpretation of these images is not possible manually, which necessitates seeking for practical, fast and automatic solutions to solve the environmental and location-based management problems. The land cover classification using high-resolution imagery is a difficult process because of the c...
متن کاملطرح نقشه نمایی مفاهیم طبّ سنّتی ایران در ساختار ابراصطلاحنامه و شبکه معنایی«(UMLS) نظام زبان واحد پزشکی »
Introduction: This research was aimed to analyze mapping scheme of Traditional Iranian Medicine (TIM) with structure of common language of meta- thesaurus and Semantic network Unified Medical System Language (UMLS). The domain, location and relation of TIM in the UMLS is designed, and recitation of location and proportion of the TIM’s concepts are provided. Methods: This is a triphasic research...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Medical Informatics Association : JAMIA
دوره 9 6 شماره
صفحات -
تاریخ انتشار 2002